文 / 阿里巴巴集团商业智能部资深经理 欧吉良(勾践)
数据的重要性已经被越来越多的公司、个人所熟知与接受,甚至于有过犹缺乏之势头。大数据的看法满天飞,似乎一夜之间人人都在谈论大数据,见了面不必大数据打招呼,似乎就不是在数据圈子里混的了。那么,被外界传得神乎其神的数据,究竟可以在哪些方面增进业务的腾飞?或者换种说法,业务对数据有哪些条理的需求?数据在哪些地方能够资助业务?
结合笔者多年的事情经验以及对数据与业务的理解,业务对数据的需求归纳为四个条理。
第一层:知其然
我们可以通过建立数据监控体系,掌握爆发了什么、水平如何,做到“知其然”。
具体来说,切入数据的角度主要有这几个方面。首先是“观天”,视察行颐魅整体趋势、政策情况影响;再是“知地”,了解竞争敌手的体现;最后是“自省”,自身做得怎么样了,自己的数据体现怎么样。从看数据的周期上来讲,“观天”可以是季度性或者更长的周期;“知地”按周或者月,特殊时间点、特殊事件情况下除外;“自省”类的数据拿到的是最全面的,需要天天看,专门有人看,有人研究。
在这一层上,分享两个看数据的看法:
1.数据是散的,看数据需要有框架。
怎么看数据很有讲究。零碎的数据很难发挥出真正的价值,把数据放到一个有效的框架里,才华发挥整体价值。所谓有效的框架至少包括两重作用:
(1)数据许多,差别人对数据需求纷歧样,如CEO、中层治理者、底层员工关注的数据通常是纷歧样的,有效的框架能够让差别的人各取所需。
(2)有效的框架能够快速地定位问题所在。举个例子,交易量指标各人都体贴,如果某一天交易量指标掉了20%,那么,业务很大可能下是出了问题,但问题究竟出在哪儿呢?如果只有几个高度笼统的指标,如转化率、成交人数、客单价等,是定位不到问题的。好的框架能够支持我们往下钻,从品类、流量渠道等找到问题所在,板子也就能打到具体的卖力人身上了。这也是我们通常所说的,看数据要落地。
2.数据,有比较才有真相。
我有120斤,你说是重照旧轻呢?一个孤零零的数据是很难说明问题的。判断某个指标增长快慢,需要选择正确的比较工具、参考系,也就是基准线。这个基准线可以是一个预先设定的目标,可以是同行业平均水平,也可以是历史的同期数据。
第二层:知其所以然
通过数据看到了问题,走到这一步还不敷。数据只是表象,是用来发明、描述问题的,实操中解决问题更重要。数据结合业务,找到数据表象背后的真正原因,解决之。解决问题的历程就会涉及数据、数据加工,还可能会涉及数据模型之类的要领或者是工具,这里面技术含量比较高,另作篇幅介绍,这里不展开了。
在第二层里也有两点分享:
1.数据是客观的,但对数据的解读则可能带有很强的主观意识。
数据自己是客观的,但消费数据的是有主观能动性的人。各人往往在解读数据的时候带入主观因素:同样一个数据在A看来结论可能是好的,从B看来可能却得出截然相反的结果。不是说泛起这样的情况欠好,真理越辩越明。但假如不是通过数据找问题,而是先对问题定性,然后有选择地利用数据证明自己的看法,这种做法就不可取了?墒率瞪,我们的身边经常爆发这样的事情。
2.懂业务才华真正懂数据。
车品觉老师的博文《不懂商业就别谈数据》对这个看法作了深刻论述,这里不展开讲了。只是由于本看法的重要性,笔者特意拿出来做一下强调。
第三层:发明时机
利用数据可以资助业务发明时机。举个例子:淘宝上有中老年打扮细分市场,有大码女装市场,这些市场可以通过对周边情况的感知,了解到我们身边有一些中老年人或者胖MM在淘宝上面没有获得需求的满足。那么另有没有其他的渠道找到更多的细分市场呢?
数据可以!
通过用户搜索的要害词与实际成交的数据比较,发明有许多需求并没有被很好地满足,反应出需求旺盛,但供应缺乏。假如发明了这样的细分市场,宣布出来给行业小二,宣布出来给卖家,是不是可以资助各人更好地去效劳消费者呢?这个例子就是现在我们在做的“潜力细分市场发明”项目。
讲这个案例,不是想吹捧数据有多厉害,而是想告诉各人:数据就在那里,有些人熟视无睹,但有些人却可以从中挖出“废物”来。差别是什么呢?商业感受。刚刚提到的搜索数据、成交数据许多人都能够看到,但以前没有人把这两份数据联系在一起看,这背后体现出的就是商业感受。
第四层:建立数据化运营体系
我理解的数据化运营,包括了两重意思:数据作为间接生产力和直接生产力。
1.数据作为间接生产力。
所谓间接生产力,是指数据事情者将数据价值通过运营通报给消费者,即通常所说的决策支持,数据事情者产出报表、剖析报告等供各级业务决策者参考。我称之为决策支持1.0模式。然而随着业务开拓和业务人员对数据重要性理解的增强,对数据的需求会如雨后春笋般冒出来,显然单单依赖人数未几的剖析师是满足不了的。授人以鱼不如授人以渔,让运营、产品的同学都能够进行数据剖析,是我脑子中的决策支持2.0模式。
决策支持2.0模式有三个要害词:产品、能力、意愿。
让运营和PD掌握SQL这类取数语言,掌握SAS、SPSS这类剖析事情,显得不大现实和须要。提供低门槛、用户体验良好的数据产品是实现决策支持2.0模式的基础。这里讲的产品,不但仅是操作功效集,还需要承载剖析思路和实际案例。
可是,数据剖析的门槛始终是保存的。这就对运营和PD提出了新的基本能力要求,即基础的数学能力、逻辑思考能力和学习能力。
最后一个意愿,也许是最要害的,只有内心有强烈的驱动,想做好这件事情的时候,才有可能做好。
2.数据作为直接生产力。
所谓直接生产力,是指数据事情者将数据价值直接通过前台产品作用于消费者。时髦点讲,叫数据变现。随着大数据时代的到来,公司治理层越来越重视这一点。大数据时代带来了大的时机,但也可能是大灾难。如果不可利用数据爆发价值,那么,它就是一个灾难——爆发的数据越多,存储的空间、浪费的资源就越多。
现在比较好理解的一个应用就是关联推荐, 你买了一个商品之后,给你推荐一个最有可能再买的商品。个性化是数据作为直接生产力的新浪潮,这个浪潮已经越来越近。数据事情者们,做好迎接的准备吧。